
System Extensions
Can you do alterations?

Oct 6, 1989

The Local Station system software has evolved over a number of years as new features have been 
added and changed. This document describes procedures that may be used to make some 
commonly-requested additions.

Add a new application page
This is done without any system code changes. After preparing the program in S-record 

format using the cross compiler and/or assembler, find an area in non-volatile memory (so the 
application will survive a power down) sufficient to contain the linked application. Download the 
code into that area using the Download Page to process the S-records sent to a serial port of one 
local station. Go to the index page and find an available page slot to be used in calling up the new 
application. Invoke the list of entry points of the applications associated with each page by calling 
up the index page again with the hex switch (one of the small console units buttons) depressed. 
Enter the starting address—which is assumed to be the entry point—of the application area and 
press the interrupt button with the cursor just beyond the last character of the 8-digit address with 
the hex switch depressed. (Obviously, without the hex switch depressed, that page would be invoked 
at the old entry address.) At this point, you should notice that the newly-entered address is 
displayed as it was typed, and there is no “–” in the second character position of the line. If there is 
a “–” present, it means that the entry point address does not seem to be valid, and the system will 
refuse to invoke it. It must be even and not too small, and it must point to a word of memory with 
the value 0x47FA, the opword for a LEA disp(A3) instruction, which must be the first instruction 
of every application page program. Then call up the new application as usual.

To provide a title to the application, call up the page, type the 16-character title on the top line 
starting in the third character position, and return to the index page by placing the cursor in the 
home position and interrupting. The new title will be available on the index page and at the top of 
the application page the next time it is invoked.

Add a new Data Access Table entry type
Design a 16-byte entry format to be used for the new type. The first byte is the type#, a 

small positive value chosen by checking the branch table READS at the end of the RDADNEW module. 
The second byte is assumed to be a destination table#, which is usually 0x00 to denote the ADATA 
table for analog channel readings or 0x05 to denote the BBYTE table for binary byte data readings. 
If no table# is required, set it to a negative value (like 0xFF) to denote that it is not a table# to get 
around the check for the entry# being out of range for the table size. (The auto-setting entry type 
uses this.) The next two bytes (the second word) are assumed to be the destination table entry#, 
and is therefore a Chan# (for the ADATA case) or a Byte# (for the BBYTE case).

Write a routine to process the entry and add its entry point to the branch table READS mentioned 
above. If the routine is external to the RDADNEW module, declare an XREF of course. The routine is 
called with registers set to the various fields of the 8-word entry as follows:

table# D4.W A1.L

D5.L D2.W D3.W

type

In addition, 
D1.L= offset to the destination table entry in the table
D6.W= #bytes/entry in destination table



A2.L= ptr to destination table entry
Condition codes set by TST.W D3 instruction

All registers may be altered by the routine except A3/A5/A6/A7. Examine other routines for 
examples. The document entitled “RDATA Entry Formats” describes the current entry types.

Add new Analog Control type
The SETAC module contains many routines selected by the analog control type byte in the 

analog control field of the analog descriptor. That field is currently 4 bytes in length. The first byte 
is the type# byte, and the meaning of the other 3 bytes depends upon the type#. A setting to an 
analog channel device results in a call to one of these routines.

To add a new type of analog control routine, design a data structure that can be used for the 
analog control field:

type

Add a new routine reference to both the branch table SETACS and the branch table SETREL at the 
end of the SETAC module. Write the SETACS routine consistent with the following register-based 
calling sequence:

D4.W= dataword to be set
A0.L= ptr to analog control field of analog descriptor for this channel
A4.L= ptr to setting word in ADATA table for this channel

Any registers may be altered except A3/A5/A6/A7. By convention, the routine should include 
copying the data word into the setting word of the ADATA entry iff no errors are detected in 
processing the setting. In this way, a readback of the setting value (following the setting command) 
can determine whether a setting to an analog channel was successful.

To support knob relative settings, the SETREL branch table invokes a routine which scales the knob 
click, the dataword for the relative setting (listype=7) case, based upon the analog control type. 
(This may not always be sufficient; the case of 1553 analog control required a separate type# for 12-
bit and 16-bit D/A relative control.) The scaled knob click value plus the setting word forms the 
intended setting value.

Add a new read type routine
An entry in the Listype Table (module LTT) indexed by listype# includes a read type#. The 

routine indexed by this value is in the READS table at the end of the COLLECT module. (Don’t be 
confused by the name READS also being used in the RDADNEW module; they are different branch 
tables.) It is invoked by an application program’s call to Collect and also by the Update task 
when updating network requests. (The Server task also calls it using CollectS.)

The routine has a register-based calling sequence. Upon entry to the routine,
D0.W= #idents–1 (or #internal ptrs – 1, since there is one ptr per ident)
D1.W= #bytes to return (>0)
A1.L= Ptr to array of internal ptrs (corresponding to original array of idents)
A2.L= Ptr to data array to be filled

The significance of an internal ptr depends on the code in the REQDGENP or PREQDGEN modules that 
generated the internal ptr. It is typically a ptr to an entry in a system table, or it may be a ptr into 
an external answer buffer, usually with the sign bit set to indicate this, or it may be a ptr to a 

System Extensions p. 2



source of zeros—a null ptr. Whatever it is, the read type routine must be aware of its possibilities.

Upon exit from the read type routine, the A2 register must be advanced past the data area of 
answers produced in satisfying the array of idents. The calling routine then will “even up” the A2 
address so that the answers for the next listype, if any, in the request will start on a word 
boundary. Note that an odd #bytes in a data request will only result in a filler byte after processing 
the array of idents. Normally, the only odd #bytes likely to be used is 1.

Also upon exit from the read type routine, if the condition code status indicates overflow, the 
calling routine will assume a bus error occurred during processing and will return an error code 4 
to the user.

Besides the A2 register and the condition code status, all registers are available to the read type 
routine, except A3/A5/A6/A7.

Most of the current read type routines are found in the COLLECT module.

Add a new set type routine
An entry in the Listype Table (module LTT) indexed by listype# includes a set type#. The 

routine indexed by this value is in the SETS table at the end of the SETDATA module. It is invoked 
by an application program’s call to SetData and also by the Network task when processing setting 
messages from the network. There are two variations of set type routines. The first is used if the ptr 
type byte is < 32, indicating a system table#. In this case, the ident is assumed to be a table entry# 
and is checked to be within the range of the table. The second variation is used if the ptr type byte 
is ≥ 32. 

Upon entry to a set type routine,
D2.W= #bytes of data
D5.W= ptr info byte
D6.W= 0 if short ident, -2 if long ident
A1.L= ptr to data
A2.L= ptr to ident

In addition, if the ptr type < 32, system table parameters are made available as
D4.W= entry# from ident
A4.L= ptr to field in table entry (using D5.W as offset to field in entry)

Add a new ptr type routine
When adding a new read type routine, it is sometimes necessary to add a new ptr type 

routine as well. The ptr type routine generates an internal ptr from an ident. The read type routine 
generates answer data from an internal ptr. For more explanation of ptr type routines, see the 
document entitled “Internal Ptrs.”

System Extensions p. 3


